Objectives [1.13 and 2.4]
Given the functions
a
=
H
(
x
)
=
−
8
+
5
x
\displaystyle {a}={H}{\left({x}\right)}=-{8}+{5}{x}
a
=
H
(
x
)
=
−
8
+
5
x
x
=
B
(
t
)
=
−
7
+
7
t
\displaystyle {x}={B}{\left({t}\right)}=-{7}+{7}{t}
x
=
B
(
t
)
=
−
7
+
7
t
Find
H
(
B
(
2
)
)
=
\displaystyle {H}{\left({B}{\left({2}\right)}\right)}=
H
(
B
(
2
)
)
=
G
(
t
)
=
H
(
B
(
t
)
)
=
\displaystyle {G}{\left({t}\right)}={H}{\left({B}{\left({t}\right)}\right)}=
G
(
t
)
=
H
(
B
(
t
)
)
=
Preview
Question 6 Part 2 of 4
G
(
t
)
=
H
(
0
)
+
5
⋅
B
(
2
)
=
\displaystyle {G}{\left({t}\right)}={H}{\left({0}\right)}+{5}\cdot{B}{\left({2}\right)}=
G
(
t
)
=
H
(
0
)
+
5
⋅
B
(
2
)
=
G
(
t
)
=
H
(
t
−
2
)
+
5
⋅
B
(
t
)
=
\displaystyle {G}{\left({t}\right)}={H}{\left({t}-{2}\right)}+{5}\cdot{B}{\left({t}\right)}=
G
(
t
)
=
H
(
t
−
2
)
+
5
⋅
B
(
t
)
=
Preview
Question 6 Part 4 of 4
Note: Simply (expand and collect) when possible
Submit
Try a similar question
License
[more..]
\displaystyle