Objectives [1.13 and 2.4]
Given the functions
a=H(x)=8+5x\displaystyle {a}={H}{\left({x}\right)}=-{8}+{5}{x}
x=B(t)=7+7t\displaystyle {x}={B}{\left({t}\right)}=-{7}+{7}{t}

Find

H(B(2))=\displaystyle {H}{\left({B}{\left({2}\right)}\right)}=

G(t)=H(B(t))=\displaystyle {G}{\left({t}\right)}={H}{\left({B}{\left({t}\right)}\right)}=  

G(t)=H(0)+5B(2)=\displaystyle {G}{\left({t}\right)}={H}{\left({0}\right)}+{5}\cdot{B}{\left({2}\right)}=

G(t)=H(t2)+5B(t)=\displaystyle {G}{\left({t}\right)}={H}{\left({t}-{2}\right)}+{5}\cdot{B}{\left({t}\right)}=  

Note: Simply (expand and collect) when possible