Solve the equation
M
=
5
r
2
h
7
\displaystyle {M}=\frac{{{5}{r}^{{2}}{h}}}{{7}}
M
=
7
5
r
2
h
for
r
\displaystyle {r}
r
in terms of
M
\displaystyle {M}
M
and
h
\displaystyle {h}
h
. Assume
r
\displaystyle {r}
r
,
M
\displaystyle {M}
M
and
h
\displaystyle {h}
h
are all positive.
r
=
5
M
7
h
\displaystyle {r}=\frac{{{5}{M}}}{{{7}{h}}}
r
=
7
h
5
M
r
=
5
h
7
M
\displaystyle {r}=\sqrt{{\frac{{{5}{h}}}{{{7}{M}}}}}
r
=
7
M
5
h
r
=
7
M
5
h
\displaystyle {r}=\sqrt{{\frac{{{7}{M}}}{{{5}{h}}}}}
r
=
5
h
7
M
r
=
5
M
7
h
\displaystyle {r}=\sqrt{{\frac{{{5}{M}}}{{{7}{h}}}}}
r
=
7
h
5
M
r
=
7
M
5
h
\displaystyle {r}=\frac{{{7}{M}}}{{{5}{h}}}
r
=
5
h
7
M
Submit
Try a similar question
License
[more..]