If
sec
t
−
tan
t
=
1
f
(
t
)
+
tan
t
,
\displaystyle {\sec{{t}}}-{\tan{{t}}}={\frac{{{1}}}{{{f{{\left({t}\right)}}}+{\tan{{t}}}}}},
sec
t
−
tan
t
=
f
(
t
)
+
tan
t
1
,
then
f
(
t
)
=
\displaystyle {f{{\left({t}\right)}}}=
f
(
t
)
=
Preview
Question 6
.
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question