The function f\displaystyle {f} is periodic with a period p=3\displaystyle {p}={3}. The function g\displaystyle {g} is periodic with a period q=4\displaystyle {q}={4}. The necessary information for each function is presented below (f\displaystyle {f} in table on left and g\displaystyle {g} on right).

x\displaystyle {x}y=f(x)\displaystyle {y}={f{{\left({x}\right)}}}
02
1-3
2-3
32
x\displaystyle {x}y=g(x)\displaystyle {y}={g{{\left({x}\right)}}}
02
1-2
2-2
3-2
42


We will define a new periodic function R(x)=f(x)+g(x)\displaystyle {R}{\left({x}\right)}={f{{\left({x}\right)}}}+{g{{\left({x}\right)}}}.
Answer the following for the function R(x)\displaystyle {R}{\left({x}\right)}.
0. Make a graph of R(x)\displaystyle {R}{\left({x}\right)} the spans at least two periods (this of course will not be entered into wamap, but you should still do it a few times).
1. What is the period of the function R\displaystyle {R}?
2. Evaluate R(11.1)=\displaystyle {R}{\left({11.1}\right)}=
3. Evaluate R(16)=\displaystyle {R}{\left({16}\right)}=
4. Evaluate R(55.8)=\displaystyle {R}{\left({55.8}\right)}=
5. Evaluate R(806)=\displaystyle {R}{\left({806}\right)}=