Guess the value of the limit (if it exists) by evaluating the function at the given numbers. (It is suggested that you report answers accurate to at least six decimal places.)
Let f(x)=cos(6x)cos(10x)x2\displaystyle {f{{\left({x}\right)}}}=\frac{{{\cos{{\left({6}{x}\right)}}}-{\cos{{\left({10}{x}\right)}}}}}{{x}^{{2}}}.
We want to find the limit limx0cos(6x)cos(10x)x2\displaystyle \lim_{{{x}\rightarrow{0}}}\frac{{{\cos{{\left({6}{x}\right)}}}-{\cos{{\left({10}{x}\right)}}}}}{{x}^{{2}}}.

Start by calculating the values of the function for the inputs listed in this table.
x\displaystyle {x}^{{\text{}}}f(x)\displaystyle {f{{\left({x}\right)}}}
0.2
0.1
0.05
0.01
0.001
0.0001
0.00001
Based on the values in this table, it appears limx0cos(6x)cos(10x)x2=\displaystyle \lim_{{{x}\rightarrow{0}}}\frac{{{\cos{{\left({6}{x}\right)}}}-{\cos{{\left({10}{x}\right)}}}}}{{{x}^{{2}}}}=