Let f(x)={8xx2ifx22x5ifx>2\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} {8}-{x}-{x}^{{2}}&\text{if}&{x}\leq{2}\\{2}{x}-{5}&\text{if}&{x}>{2}\end{array}\right.}
Calculate the following limits. Enter "DNE" if the limit does not exist.
limx2  f(x)=\displaystyle \lim_{{{x}\to{2}^{{-}}}}\ \ {f{{\left({x}\right)}}}=  

limx2+  f(x)=\displaystyle \lim_{{{x}\to{2}^{+}}}\ \ {f{{\left({x}\right)}}}=  

limx2  f(x)=\displaystyle \lim_{{{x}\to{2}}}\ \ {f{{\left({x}\right)}}}=