A function f(x)\displaystyle {f{{\left({x}\right)}}} is said to have a jump discontinuity at x=a\displaystyle {x}={a} if:
1. limxa  f(x)\displaystyle \lim_{{{x}\to{a}^{{-}}}}\ \ {f{{\left({x}\right)}}} exists.
2. limxa+  f(x)\displaystyle \lim_{{{x}\to{a}^{+}}}\ \ {f{{\left({x}\right)}}} exists.
3. The left and right limits are not equal.


Let f(x)={8x7ifx<41x+4ifx4\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} {8}{x}-{7}&\text{if}&{x}<{4}\\{\frac{{{1}}}{{{x}+{4}}}}&\text{if}&{x}\geq{4}\end{array}\right.}
Show that f(x)\displaystyle {f{{\left({x}\right)}}} has a jump discontinuity at x=4\displaystyle {x}={4} by calculating the limits from the left and right at x=4\displaystyle {x}={4}.
limx4  f(x)=\displaystyle \lim_{{{x}\to{4}^{{-}}}}\ \ {f{{\left({x}\right)}}}=  
limx4+  f(x)=\displaystyle \lim_{{{x}\to{4}^{+}}}\ \ {f{{\left({x}\right)}}}=  
Now for fun, try to graph f(x)\displaystyle {f{{\left({x}\right)}}}.