A function
f ( x ) \displaystyle {f{{\left({x}\right)}}} f ( x ) is said to have a
jump discontinuity at
x = a \displaystyle {x}={a} x = a if:
1. lim x → a − f ( x ) \displaystyle \lim_{{{x}\to{a}^{{-}}}}\ \ {f{{\left({x}\right)}}} x → a − lim f ( x ) exists.
2. lim x → a + f ( x ) \displaystyle \lim_{{{x}\to{a}^{+}}}\ \ {f{{\left({x}\right)}}} x → a + lim f ( x ) exists.
3. The left and right limits are not equal.
Let
f ( x ) = { 8 x − 7 if x < 4 1 x + 4 if x ≥ 4 \displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} {8}{x}-{7}&\text{if}&{x}<{4}\\{\frac{{{1}}}{{{x}+{4}}}}&\text{if}&{x}\geq{4}\end{array}\right.} f ( x ) = { 8 x − 7 x + 4 1 if if x < 4 x ≥ 4
Show that
f ( x ) \displaystyle {f{{\left({x}\right)}}} f ( x ) has a jump discontinuity at
x = 4 \displaystyle {x}={4} x = 4 by calculating the limits from the left and right at
x = 4 \displaystyle {x}={4} x = 4 .
lim x → 4 − f ( x ) = \displaystyle \lim_{{{x}\to{4}^{{-}}}}\ \ {f{{\left({x}\right)}}}= x → 4 − lim f ( x ) = Preview Question 6 Part 1 of 2
lim x → 4 + f ( x ) = \displaystyle \lim_{{{x}\to{4}^{+}}}\ \ {f{{\left({x}\right)}}}= x → 4 + lim f ( x ) = Preview Question 6 Part 2 of 2
Now for fun, try to graph
f ( x ) \displaystyle {f{{\left({x}\right)}}} f ( x ) .
Submit Try a similar question
[more..]
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4) Enter DNE for Does Not Exist, oo for Infinity
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4) Enter DNE for Does Not Exist, oo for Infinity