Let
f
(
x
)
=
{
−
2
x
+
b
if
x
<
−
4
−
96
x
−
b
if
x
≥
−
4
\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} -{2}{x}+{b}&\text{if}&{x}<-{4}\\{\frac{{-{96}}}{{{x}-{b}}}}&\text{if}&{x}\geq-{4}\end{array}\right.}
f
(
x
)
=
{
−
2
x
+
b
x
−
b
−
96
if
if
x
<
−
4
x
≥
−
4
There are exactly two values for
b
\displaystyle {b}
b
which make
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
a continuous function at
x
=
−
4
\displaystyle {x}=-{4}
x
=
−
4
. The one with the greater absolute value is
b
=
\displaystyle {b}=
b
=
Preview
Question 6
Now for fun, try to graph
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
.
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4)
Enter DNE for Does Not Exist, oo for Infinity