Let f(x)={2x+bifx<496xbifx4\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} -{2}{x}+{b}&\text{if}&{x}<-{4}\\{\frac{{-{96}}}{{{x}-{b}}}}&\text{if}&{x}\geq-{4}\end{array}\right.}
There are exactly two values for b\displaystyle {b} which make f(x)\displaystyle {f{{\left({x}\right)}}} a continuous function at x=4\displaystyle {x}=-{4}. The one with the greater absolute value is
b=\displaystyle {b}=  
Now for fun, try to graph f(x)\displaystyle {f{{\left({x}\right)}}}.