Let f(x)={7x3ifx<65x+6ifx6\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} {7}{x}-{3}&\text{if}&{x}<{6}\\{\frac{{{5}}}{{{x}+{6}}}}&\text{if}&{x}\geq{6}\end{array}\right.}
Show that f(x)\displaystyle {f{{\left({x}\right)}}} has a jump discontinuity at x=6\displaystyle {x}={6} by calculating the limits from the left and right at x=6\displaystyle {x}={6}.

limx6f(x)=\displaystyle \lim_{{{x}\to{6}^{{-}}}}{f{{\left({x}\right)}}}=  

limx6+f(x)=\displaystyle \lim_{{{x}\to{6}^{+}}}{f{{\left({x}\right)}}}=