A function is said to have a horizontal asymptote if either the limit at infinity exists or the limit at negative infinity exists.
Show that each of the following functions has a horizontal asymptote by calculating the given limit.

limx 12x9+2x=\displaystyle \lim_{{{x}\to\infty}}\ \frac{{-{12}{x}}}{{{9}+{2}{x}}}=  

limx 8x2x3+3x2=\displaystyle \lim_{{{x}\to-\infty}}\ \frac{{{8}{x}-{2}}}{{{x}^{{3}}+{3}{x}-{2}}}=  

limx x24x41411x2=\displaystyle \lim_{{{x}\to\infty}}\ \frac{{{x}^{{2}}-{4}{x}-{4}}}{{{14}-{11}{x}^{{2}}}}=  

limx x2+7x138x=\displaystyle \lim_{{{x}\to\infty}}\ \frac{{\sqrt{{{x}^{{2}}+{7}{x}}}}}{{{13}-{8}{x}}}=  

limx x2+7x138x=\displaystyle \lim_{{{x}\to-\infty}}\ \frac{{\sqrt{{{x}^{{2}}+{7}{x}}}}}{{{13}-{8}{x}}}=