A function is said to have a
horizontal asymptote if either the limit at infinity exists or the limit at negative infinity exists.
Show that each of the following functions has a horizontal asymptote by calculating the given limit.
lim x → ∞ − 12 x 9 + 2 x = \displaystyle \lim_{{{x}\to\infty}}\ \frac{{-{12}{x}}}{{{9}+{2}{x}}}= x → ∞ lim 9 + 2 x − 12 x = Preview Question 6 Part 1 of 5
lim x → − ∞ 8 x − 2 x 3 + 3 x − 2 = \displaystyle \lim_{{{x}\to-\infty}}\ \frac{{{8}{x}-{2}}}{{{x}^{{3}}+{3}{x}-{2}}}= x → − ∞ lim x 3 + 3 x − 2 8 x − 2 = Preview Question 6 Part 2 of 5
lim x → ∞ x 2 − 4 x − 4 14 − 11 x 2 = \displaystyle \lim_{{{x}\to\infty}}\ \frac{{{x}^{{2}}-{4}{x}-{4}}}{{{14}-{11}{x}^{{2}}}}= x → ∞ lim 14 − 11 x 2 x 2 − 4 x − 4 = Preview Question 6 Part 3 of 5
lim x → ∞ x 2 + 7 x 13 − 8 x = \displaystyle \lim_{{{x}\to\infty}}\ \frac{{\sqrt{{{x}^{{2}}+{7}{x}}}}}{{{13}-{8}{x}}}= x → ∞ lim 13 − 8 x x 2 + 7 x = Preview Question 6 Part 4 of 5
lim x → − ∞ x 2 + 7 x 13 − 8 x = \displaystyle \lim_{{{x}\to-\infty}}\ \frac{{\sqrt{{{x}^{{2}}+{7}{x}}}}}{{{13}-{8}{x}}}= x → − ∞ lim 13 − 8 x x 2 + 7 x = Preview Question 6 Part 5 of 5
Submit Try a similar question
[more..]
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4) Enter DNE for Does Not Exist, oo for Infinity
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4) Enter DNE for Does Not Exist, oo for Infinity
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4) Enter DNE for Does Not Exist, oo for Infinity
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4) Enter DNE for Does Not Exist, oo for Infinity
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4) Enter DNE for Does Not Exist, oo for Infinity