For each slope below, enter the value correct to four decimal places.

Let f(x)=9.1x27.8x\displaystyle {f{{\left({x}\right)}}}={9.1}{x}^{{2}}-{7.8}{x}. Using the formula, m=f(x+h)f(x)h\displaystyle {m}=\frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({x}\right)}}}}}{{h}}, estimate the slope of the tangent line on the graph of f(x)\displaystyle {f{{\left({x}\right)}}} at x=2\displaystyle {x}={2} for the following values of h\displaystyle {h}:

h=1\displaystyle {h}={1}:   m=\displaystyle {m}=  

h=0.5\displaystyle {h}={0.5}:   m=\displaystyle {m}=  

h=0.1\displaystyle {h}={0.1}:   m=\displaystyle {m}=  

h=0.01\displaystyle {h}={0.01}:   m=\displaystyle {m}=  

h=0.001\displaystyle {h}={0.001}:   m=\displaystyle {m}=