Let f(x)=1x8\displaystyle {f{{\left({x}\right)}}}={\frac{{{1}}}{{{x}-{8}}}}. Calculate the difference quotient
f(6+h)f(6)h\displaystyle {\frac{{{f{{\left({6}+{h}\right)}}}-{f{{\left({6}\right)}}}}}{{{h}}}} for
h=.1\displaystyle {h}={.1}  
h=.01\displaystyle {h}={.01}  
h=.01\displaystyle {h}=-{.01}  
h=.1\displaystyle {h}=-{.1}  
If someone now told you that the derivative (slope of the tangent line to the graph) of f(x)\displaystyle {f{{\left({x}\right)}}} at x=6\displaystyle {x}={6} was 1n2\displaystyle -\frac{{1}}{{n}^{{2}}} for some integer n\displaystyle {n} what would you expect n\displaystyle {n} to be?
n=\displaystyle {n}=