If g(t)=2t4+4t22\displaystyle {g{{\left({t}\right)}}}={2}{t}^{{4}}+{4}{t}^{{2}}-{2} find
g(0)=\displaystyle {g{{\left({0}\right)}}}=  
g(0)=\displaystyle {g}'{\left({0}\right)}=  
g(0)=\displaystyle {g}{''}{\left({0}\right)}=  
g(0)=\displaystyle {g}{'''}{\left({0}\right)}=  
g(4)(0)=\displaystyle {{g}^{{{\left({4}\right)}}}{\left({0}\right)}}=  
g(5)(0)=\displaystyle {{g}^{{{\left({5}\right)}}}{\left({0}\right)}}=