Let f(x)=3sinx6sinx+2cosx\displaystyle {f{{\left({x}\right)}}}=\frac{{{3}{\sin{{x}}}}}{{{6}{\sin{{x}}}+{2}{\cos{{x}}}}}.

Then f(x)=\displaystyle {f}'{\left({x}\right)}=  

The equation of the tangent line to y=f(x)\displaystyle {y}={f{{\left({x}\right)}}} at a=π6\displaystyle {a}=\frac{\pi}{{6}} can be written in the form y=mx+b\displaystyle {y}={m}{x}+{b} where
m=\displaystyle {m}=   and
b=\displaystyle {b}=