Use implicit differentiation to determine dydx\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}} given the equation x6+y2=1\displaystyle {x}^{{6}}+{y}^{{2}}=-{1}.

dydx= \displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}=\