Consider the function f(x)=3x26x+9,0x6\displaystyle {f{{\left({x}\right)}}}={3}{x}^{{2}}-{6}{x}+{9},\quad{0}\leq{x}\leq{6}.

The absolute maximum of f(x)\displaystyle {f{{\left({x}\right)}}} (on the given interval) is at x\displaystyle {x} =  

and the absolute minimum of f(x)\displaystyle {f{{\left({x}\right)}}} (on the given interval) is at x\displaystyle {x} =