Consider the function f(x)=2x2+10x5\displaystyle {f{{\left({x}\right)}}}=-{2}{x}^{{2}}+{10}{x}-{5}. f(x)\displaystyle {f{{\left({x}\right)}}} is increasing on the interval (,A]\displaystyle {\left(-\infty,{A}\right]} and decreasing on the interval [A,)\displaystyle {\left[{A},\infty\right)} where A\displaystyle {A} is the critical number.
Find A\displaystyle {A}  


At x=A\displaystyle {x}={A}, does f(x)\displaystyle {f{{\left({x}\right)}}} have a local min, a local max, or neither? Type in your answer as LMIN, LMAX, or NEITHER.