Consider the function f(x)=3x+4x1\displaystyle {f{{\left({x}\right)}}}={3}{x}+{4}{x}^{{-{1}}}. For this function there are four important open intervals: (,A)\displaystyle {\left(-\infty,{A}\right)}, (A,B)\displaystyle {\left({A},{B}\right)},(B,C)\displaystyle {\left({B},{C}\right)}, and (C,)\displaystyle {\left({C},\infty\right)} where A\displaystyle {A}, and C\displaystyle {C} are the critical numbers and the function is not defined at B\displaystyle {B}.
Find A\displaystyle {A}  
and B\displaystyle {B}  
and C\displaystyle {C}  

For each of the following open intervals, tell whether f(x)\displaystyle {f{{\left({x}\right)}}} is increasing (type in INC) or decreasing (type in DEC).
(,A)\displaystyle {\left(-\infty,{A}\right)}:
(A,B)\displaystyle {\left({A},{B}\right)}:
(B,C)\displaystyle {\left({B},{C}\right)}:
(C,)\displaystyle {\left({C},\infty\right)}: