Consider the function f(x)=x2e15x\displaystyle {f{{\left({x}\right)}}}={x}^{{{2}}}{e}^{{{15}{x}}}.
For this function there are three important intervals: (,A]\displaystyle {\left(-\infty,{A}\right]}, [A,B]\displaystyle {\left[{A},{B}\right]}, and [B,)\displaystyle {\left[{B},\infty\right)} where A\displaystyle {A} and B\displaystyle {B} are the critical numbers.
Find A\displaystyle {A}  
and B\displaystyle {B}  

For each of the following intervals, tell whether f(x)\displaystyle {f{{\left({x}\right)}}} is increasing (type in INC) or decreasing (type in DEC).
(,A]\displaystyle {\left(-\infty,{A}\right]}:
[A,B]\displaystyle {\left[{A},{B}\right]}:
[B,)\displaystyle {\left[{B},\infty\right)}