If
∫
a
b
f
(
x
)
d
x
=
∫
−
8
6
f
(
x
)
d
x
+
∫
6
11
f
(
x
)
d
x
−
∫
−
8
−
2
f
(
x
)
d
x
\displaystyle {\int_{{a}}^{{b}}}{f{{\left({x}\right)}}}{\left.{d}{x}\right.}={\int_{{-{{8}}}}^{{6}}}{f{{\left({x}\right)}}}{\left.{d}{x}\right.}+{\int_{{6}}^{{11}}}{f{{\left({x}\right)}}}{\left.{d}{x}\right.}-{\int_{{-{{8}}}}^{{-{{2}}}}}{f{{\left({x}\right)}}}{\left.{d}{x}\right.}
∫
a
b
f
(
x
)
d
x
=
∫
−
8
6
f
(
x
)
d
x
+
∫
6
11
f
(
x
)
d
x
−
∫
−
8
−
2
f
(
x
)
d
x
,
what are the bounds of integration for the first integral?
a
=
and
b
=
Question Help:
Video
Submit
Try a similar question
License
[more..]