Verify that
1
x
2
−
1
=
1
2
(
1
x
−
1
−
1
x
+
1
)
\displaystyle {\frac{{{1}}}{{{x}^{{2}}-{1}}}}={\frac{{{1}}}{{{2}}}}{\left({\frac{{{1}}}{{{x}-{1}}}}-{\frac{{{1}}}{{{x}+{1}}}}\right)}
x
2
−
1
1
=
2
1
(
x
−
1
1
−
x
+
1
1
)
and use this equation to evaluate
∫
2
3
5
x
2
−
1
,
d
x
\displaystyle {\int_{{{2}}}^{{{3}}}}{\frac{{{5}}}{{{x}^{{2}}-{1}}}},{\left.{d}{x}\right.}
∫
2
3
x
2
−
1
5
,
d
x
Preview
Question 6
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4)
Enter DNE for Does Not Exist, oo for Infinity