The partial fraction decomposition of 20(x1)(x+2)\displaystyle {\frac{{{20}}}{{{\left({x}-{1}\right)}{\left({x}+{2}\right)}}}} can be written in the form of f(x)x1+g(x)x+2.\displaystyle {\frac{{{f{{\left({x}\right)}}}}}{{{x}-{1}}}}+{\frac{{{g{{\left({x}\right)}}}}}{{{x}+{2}}}}.
The possible anwsers for f(x)\displaystyle {f{{\left({x}\right)}}} and g(x)\displaystyle {g{{\left({x}\right)}}} are (a) A\displaystyle {A}, a constant, or (b) Ax+B\displaystyle {A}{x}+{B}, a linear function.
f(x)\displaystyle {f{{\left({x}\right)}}} is in the form of (input a or b)
and g(x)\displaystyle {g{{\left({x}\right)}}} is in the form of (input a or b) .