The partial fraction decomposition of x2+11(x3)(x2+4)\displaystyle {\frac{{{x}^{{2}}+{11}}}{{{\left({x}-{3}\right)}{\left({x}^{{2}}+{4}\right)}}}} can be written in the form of f(x)x3+g(x)x2+4.\displaystyle {\frac{{{f{{\left({x}\right)}}}}}{{{x}-{3}}}}+{\frac{{{g{{\left({x}\right)}}}}}{{{x}^{{2}}+{4}}}}.
The possible anwsers for f(x)\displaystyle {f{{\left({x}\right)}}} and g(x)\displaystyle {g{{\left({x}\right)}}} are (a) A\displaystyle {A}, a constant, or (b) Ax+B\displaystyle {A}{x}+{B}, a linear function.
f(x)\displaystyle {f{{\left({x}\right)}}} is in the form of (input a or b)
and g(x)\displaystyle {g{{\left({x}\right)}}} is in the form of (input a or b) .