Consider the indefinite integral 5x3+9x2+64x+96x4+16x2dx\displaystyle \int{\frac{{{5}{x}^{{3}}+{9}{x}^{{2}}+{64}{x}+{96}}}{{{x}^{{4}}+{16}{x}^{{2}}}}}{\left.{d}{x}\right.}
Then the integrand has partial fractions decomposition
ax2+bx+cx+dx2+16\displaystyle {\frac{{{a}}}{{{x}^{{2}}}}}+{\frac{{{b}}}{{{x}}}}+{\frac{{{c}{x}+{d}}}{{{x}^{{2}}+{16}}}}
where
a\displaystyle {a} =
b\displaystyle {b} =
c\displaystyle {c} =
d\displaystyle {d} =

Integrating term by term, we obtain that
5x3+9x2+64x+96x4+16x2dx=\displaystyle \int{\frac{{{5}{x}^{{3}}+{9}{x}^{{2}}+{64}{x}+{96}}}{{{x}^{{4}}+{16}{x}^{{2}}}}}{\left.{d}{x}\right.}=
  +C\displaystyle +{C}