Let f(x)\displaystyle {f{{\left({x}\right)}}} be a continuous function defined on the interval 2x<\displaystyle {2}\le{x}\lt\infty such that
f(2)=15\displaystyle {f{{\left({2}\right)}}}={15}

f(x)<x7+11\displaystyle {\left|{f{{\left({x}\right)}}}\right|}<{x}^{{{7}}}+{11}
and
2f(x)ex4,dx=2\displaystyle {\int_{{{2}}}^{{\infty}}}{f{{\left({x}\right)}}}{e}^{{-\frac{{x}}{{4}}}},{\left.{d}{x}\right.}=-{2}

Determine the value of
2f(x)ex4,dx\displaystyle {\int_{{{2}}}^{{\infty}}}{f}'{\left({x}\right)}{e}^{{-\frac{{x}}{{4}}}},{\left.{d}{x}\right.}