Consider the Type I improper integral 02exdx\displaystyle {\int_{{0}}^{\infty}}{2}{e}^{{-{x}}}{\left.{d}{x}\right.}.

To determine whether the integral is divergent or convergent, do the following:

a) Find the value of 0t2exdx\displaystyle {\int_{{0}}^{{t}}}{2}{e}^{{-{x}}}{\left.{d}{x}\right.}. Note that your answer will be in terms of t\displaystyle {t}.

0t2exdx=\displaystyle {\int_{{0}}^{{t}}}{2}{e}^{{-{x}}}{\left.{d}{x}\right.}=  

b) Now find the limit of your answer as t\displaystyle {t} approaches infinity. If the limit exists enter the limit value. If the limit does not exist, enter DNE.

limt0t2exdx=\displaystyle \lim_{{{t}\rightarrow\infty}}{\int_{{0}}^{{t}}}{2}{e}^{{-{x}}}{\left.{d}{x}\right.}=  

c) Which of the following is true?