Let p(t)\displaystyle {p}{\left({t}\right)} be the probability density function given by p(t)=αf(t)\displaystyle {p}{\left({t}\right)}=\alpha\cdot{f{{\left({t}\right)}}} where
f(t)={10x+9if0t105x+159if10<t<300otherwise\displaystyle {f{{\left({t}\right)}}}={\left\lbrace\begin{array}{ccc} {10}{x}+{9}&\text{if}&{0}\leq{t}\leq{10}\\-{5}{x}+{159}&\text{if}&{10}<{t}<{30}\\{0}&&\text{otherwise}\end{array}\right.}


Find the value of α\displaystyle \alpha that makes p(t)\displaystyle {p}{\left({t}\right)} a probability density function:
α\displaystyle \alpha =  

Find the median value of p(t)\displaystyle {p}{\left({t}\right)}:
median =  

Find the following probability:
P(5.9<X<23.5)\displaystyle {P}{\left({5.9}<{X}<{23.5}\right)} =  

 
 
 
Enter your answer as a number (like 5, -3, 2.2) or as a calculation (like 5/3, 2^3, 5+4). If you enter your answer as a decimal, your answer should be accurate to at least 6 decimal places.