a) Verify that the function

y=x2+cx2\displaystyle {y}={x}^{{2}}+{\frac{{{c}}}{{{x}^{{2}}}}}

is a solution of the differential equation

xy+2y=4x2, (x>0).\displaystyle {x}{y}'+{2}{y}={4}{x}^{{2}},\ {\left({x}\gt{0}\right)}.

b) Find the value of c\displaystyle {c} for which the solution satisfies the initial condition y(5)=1\displaystyle {y}{\left({5}\right)}={1}.

c=\displaystyle {c}=