Which of the following functions (there may be more than one) are solutions of the differential equation
y
′
′
−
4
y
′
+
4
y
=
e
t
\displaystyle {y}{''}-{4}{y}'+{4}{y}={e}^{{t}}
y
′′
−
4
y
′
+
4
y
=
e
t
?
y
=
t
e
2
t
+
e
t
\displaystyle {y}={t}{e}^{{{2}{t}}}+{e}^{{t}}
y
=
t
e
2
t
+
e
t
y
=
e
t
\displaystyle {y}={e}^{{t}}
y
=
e
t
y
=
e
2
t
\displaystyle {y}={e}^{{{2}{t}}}
y
=
e
2
t
y
=
e
2
t
+
t
e
t
\displaystyle {y}={e}^{{{2}{t}}}+{t}{e}^{{t}}
y
=
e
2
t
+
t
e
t
y
=
e
2
t
+
e
t
\displaystyle {y}={e}^{{{2}{t}}}+{e}^{{t}}
y
=
e
2
t
+
e
t
Question Help:
Video
Submit
Try a similar question
License
[more..]