Find f(x)\displaystyle {f{{\left({x}\right)}}} if y=f(x)\displaystyle {y}={f{{\left({x}\right)}}} satisfies

dydx=28yx3\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}={28}{y}{x}^{{{3}}}

and the y\displaystyle {y}-intercept of the curve y=f(x)\displaystyle {y}={f{{\left({x}\right)}}} is 6\displaystyle {6}.

f(x)=\displaystyle {f{{\left({x}\right)}}}=