Solve the differential equation
(
y
12
x
)
d
y
d
x
=
1
+
x
.
\displaystyle {\left({y}^{{{12}}}{x}\right)}{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={1}+{x}.
(
y
12
x
)
d
x
d
y
=
1
+
x
.
Use the initial condition
y
(
1
)
=
3
\displaystyle {y}{\left({1}\right)}={3}
y
(
1
)
=
3
.
Express
y
13
\displaystyle {y}^{{{13}}}
y
13
in terms of
x
\displaystyle {x}
x
.
y
13
=
\displaystyle {y}^{{{13}}}=
y
13
=
Preview
Question 6
.
Question Help:
Video
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question