Find f(x)\displaystyle {f{{\left({x}\right)}}} if y=f(x)\displaystyle {y}={f{{\left({x}\right)}}} satisfies
dydx=112yx13\displaystyle {\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={112}{y}{x}^{{{13}}}
and the y\displaystyle {y}-intercept of the curve y=f(x)\displaystyle {y}={f{{\left({x}\right)}}} is 3\displaystyle {3}.
f(x)=\displaystyle {f{{\left({x}\right)}}}=   .