Compute the value of the following improper integral if it converges. If it diverges, enter oo if it diverges to infinity, -oo if it diverges to minus infinity, or DNE otherwise (hint: integrate by parts).


18ln(x)x8dx\displaystyle {\int_{{1}}^{{\infty}}}{\frac{{{8}{\ln{{\left({x}\right)}}}}}{{{x}^{{8}}}}}{\left.{d}{x}\right.}

 
Determine whether
n=1(8ln(n)n8)\displaystyle {\sum_{{{n}={1}}}^{\infty}}{\left({\frac{{{8}{\ln{{\left({n}\right)}}}}}{{{n}^{{8}}}}}\right)}
is a convergent series. Enter C if the series is convergent, or D if it is divergent.