The curves r1(t)=t,t5,5t2\displaystyle \vec{{r}}_{{1}}{\left({t}\right)}={\left\langle-{t},{t}^{{{5}}},{5}{t}^{{{2}}}\right\rangle} and r2(t)=sin(3t),sin(4t),tπ\displaystyle \vec{{r}}_{{2}}{\left({t}\right)}={\left\langle{\sin{{\left(-{3}{t}\right)}}},{\sin{{\left(-{4}{t}\right)}}},{t}-\pi\right\rangle} intersect at the origin.

Find the acute angle of intersection (in radians) on the domain 0tπ\displaystyle {0}\le{t}\le\pi, to at least two decimal places.