Choose the equation that gives a parameterization for the surface graphed below.
Not seeing the 3D graph?
Try Flash Alternate
r
‾
(
u
,
v
)
=
<
v
cos
(
u
)
,
v
sin
(
u
)
,
v
2
>
\displaystyle \overline{{{r}}}{\left({u},{v}\right)}=<{v}{\cos{{\left({u}\right)}}},{v}{\sin{{\left({u}\right)}}},{v}^{{2}}>
r
(
u
,
v
)
=<
v
cos
(
u
)
,
v
sin
(
u
)
,
v
2
>
r
‾
(
u
,
v
)
=
<
(
2
+
v
)
cos
(
u
)
,
(
2
+
v
)
sin
(
u
)
,
u
>
\displaystyle \overline{{{r}}}{\left({u},{v}\right)}=<{\left({2}+{v}\right)}{\cos{{\left({u}\right)}}},{\left({2}+{v}\right)}{\sin{{\left({u}\right)}}},{u}>
r
(
u
,
v
)
=<
(
2
+
v
)
cos
(
u
)
,
(
2
+
v
)
sin
(
u
)
,
u
>
r
‾
(
u
,
v
)
=
<
(
2
+
v
)
cos
(
u
)
,
(
2
+
v
)
sin
(
u
)
,
u
+
v
2
>
\displaystyle \overline{{{r}}}{\left({u},{v}\right)}=<{\left({2}+{v}\right)}{\cos{{\left({u}\right)}}},{\left({2}+{v}\right)}{\sin{{\left({u}\right)}}},{u}+{v}^{{2}}>
r
(
u
,
v
)
=<
(
2
+
v
)
cos
(
u
)
,
(
2
+
v
)
sin
(
u
)
,
u
+
v
2
>
r
‾
(
u
,
v
)
=
<
(
2
+
v
)
cos
(
u
)
,
(
2
+
v
)
sin
(
u
)
,
v
2
>
\displaystyle \overline{{{r}}}{\left({u},{v}\right)}=<{\left({2}+{v}\right)}{\cos{{\left({u}\right)}}},{\left({2}+{v}\right)}{\sin{{\left({u}\right)}}},{v}^{{2}}>
r
(
u
,
v
)
=<
(
2
+
v
)
cos
(
u
)
,
(
2
+
v
)
sin
(
u
)
,
v
2
>
r
‾
(
u
,
v
)
=
<
v
cos
(
u
)
,
v
sin
(
u
)
,
u
+
v
2
>
\displaystyle \overline{{{r}}}{\left({u},{v}\right)}=<{v}{\cos{{\left({u}\right)}}},{v}{\sin{{\left({u}\right)}}},{u}+{v}^{{2}}>
r
(
u
,
v
)
=<
v
cos
(
u
)
,
v
sin
(
u
)
,
u
+
v
2
>
Submit
Try a similar question
License
[more..]