Given:
z
=
x
3
+
x
y
4
,
x
=
u
v
3
+
w
4
,
y
=
u
+
v
e
w
\displaystyle {z}={x}^{{3}}+{x}{y}^{{4}},\quad{x}={u}{v}^{{3}}+{w}^{{4}},\quad{y}={u}+{v}{e}^{{w}}
z
=
x
3
+
x
y
4
,
x
=
u
v
3
+
w
4
,
y
=
u
+
v
e
w
Find
∂
z
∂
u
\displaystyle \frac{{\partial{z}}}{{\partial{u}}}
∂
u
∂
z
when
u
=
1
,
v
=
−
1
,
w
=
0
\displaystyle {u}={1},\ {v}=-{1},\ {w}={0}
u
=
1
,
v
=
−
1
,
w
=
0
Preview
Question 6
Question Help:
Video
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4)
Enter DNE for Does Not Exist, oo for Infinity