The gradient of f(x,y)=e4xsin(2y)\displaystyle {f{{\left({x},{y}\right)}}}={e}^{{{4}\cdot{x}}}{\sin{{\left({2}\cdot{y}\right)}}} at (x,y)=(2,3)\displaystyle {\left({x},{y}\right)}={\left({2},-{3}\right)} is defined as followed:
f(x,y)=(fx(2,3),fy(2,3))\displaystyle \nabla{f{{\left({x},{y}\right)}}}={\left({{f}_{{x}}{\left({2},-{3}\right)}},{{f}_{{y}}{\left({2},-{3}\right)}}\right)}.
Then
fx(2,3)=\displaystyle {{f}_{{x}}{\left({2},-{3}\right)}}=  
fy(2,3)=\displaystyle {{f}_{{y}}{\left({2},-{3}\right)}}=