Suppose that f(x,y)\displaystyle {f{{\left({x},{y}\right)}}} = x2xy+y22x+2y\displaystyle {x}^{{2}}-{x}{y}+{y}^{{2}}-{2}{x}+{2}{y} with 2x,y2\displaystyle -{2}\le{x},{y}\le{2}.
  1. The critical point of f(x,y)\displaystyle {f{{\left({x},{y}\right)}}} is at (a,b)\displaystyle {\left({a},{b}\right)}. Then a=\displaystyle {a}=  
    and b=\displaystyle {b}=  
  2. Absolute minimum of f(x,y)\displaystyle {f{{\left({x},{y}\right)}}} is  
    and absolute maximum is   .