Suppose that f(x,y)\displaystyle {f{{\left({x},{y}\right)}}} = x2+y2\displaystyle {x}^{{2}}+{y}^{{2}} at which 0x,y\displaystyle {0}\le{x},{y} and 1x+9y6\displaystyle {1}{x}+{9}{y}\le{6}.

  1. Absolute minimum of f(x,y)\displaystyle {f{{\left({x},{y}\right)}}} is  
  2. absolute maximum of f(x,y)\displaystyle {f{{\left({x},{y}\right)}}} is   .