Suppose that f(x,y)=6x+8y\displaystyle {f{{\left({x},{y}\right)}}}={6}{x}+{8}{y} and the region D\displaystyle {D} is given by {(x,y)4x3,4y3}\displaystyle {\left\lbrace{\left({x},{y}\right)}{\mid}-{4}\le{x}\le{3},-{4}\le{y}\le{3}\right\rbrace}.

D[Graphs generated by this script: initPicture(-6,6,-6,6),axes(),rect([-4,-4],[3,3]),stroke="red",text([1.5,1.5],"D") ]

Then the double integral of f(x,y)\displaystyle {f{{\left({x},{y}\right)}}} over D\displaystyle {D} is

Df(x,y)dxdy=\displaystyle \int\int_{{D}}{f{{\left({x},{y}\right)}}}{d}{x}{\left.{d}{y}\right.}=