Suppose that
f
(
x
,
y
)
=
6
x
+
8
y
\displaystyle {f{{\left({x},{y}\right)}}}={6}{x}+{8}{y}
f
(
x
,
y
)
=
6
x
+
8
y
and the region
D
\displaystyle {D}
D
is given by
{
(
x
,
y
)
∣
−
4
≤
x
≤
3
,
−
4
≤
y
≤
3
}
\displaystyle {\left\lbrace{\left({x},{y}\right)}{\mid}-{4}\le{x}\le{3},-{4}\le{y}\le{3}\right\rbrace}
{
(
x
,
y
)
∣
−
4
≤
x
≤
3
,
−
4
≤
y
≤
3
}
.
D
[Graphs generated by this script: initPicture(-6,6,-6,6),axes(),rect([-4,-4],[3,3]),stroke="red",text([1.5,1.5],"D") ]
Then the double integral of
f
(
x
,
y
)
\displaystyle {f{{\left({x},{y}\right)}}}
f
(
x
,
y
)
over
D
\displaystyle {D}
D
is
∫
∫
D
f
(
x
,
y
)
d
x
d
y
=
\displaystyle \int\int_{{D}}{f{{\left({x},{y}\right)}}}{d}{x}{\left.{d}{y}\right.}=
∫
∫
D
f
(
x
,
y
)
d
x
d
y
=
Preview
Question 6
Question Help:
Video
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4)
Enter DNE for Does Not Exist, oo for Infinity