Suppose that
f
(
x
,
y
)
\displaystyle {f{{\left({x},{y}\right)}}}
f
(
x
,
y
)
=
e
x
/
y
\displaystyle {e}^{{{x}/{y}}}
e
x
/
y
on the domain
D
=
{
(
x
,
y
)
∣
0
≤
y
≤
2
,
0
≤
x
≤
y
3
}
\displaystyle {D}={\left\lbrace{\left({x},{y}\right)}{\mid}{0}\le{y}\le{2},{0}\le{x}\le{y}^{{3}}\right\rbrace}
D
=
{
(
x
,
y
)
∣
0
≤
y
≤
2
,
0
≤
x
≤
y
3
}
.
D
[Graphs generated by this script: initPicture(-1,9,-1,3);axes(1,1);stroke="red";path([[0,0],[0,2],[8,2]]);plot("x^(1/3)",0,8);text([1,1/2],"D");]
Then the double integral of
f
(
x
,
y
)
\displaystyle {f{{\left({x},{y}\right)}}}
f
(
x
,
y
)
over
D
\displaystyle {D}
D
is
∫
∫
D
f
(
x
,
y
)
d
x
d
y
=
\displaystyle \int\int_{{D}}{f{{\left({x},{y}\right)}}}{d}{x}{\left.{d}{y}\right.}=
∫
∫
D
f
(
x
,
y
)
d
x
d
y
=
Preview
Question 6
.
Question Help:
Video
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4)
Enter DNE for Does Not Exist, oo for Infinity