Suppose that f(x,y)\displaystyle {f{{\left({x},{y}\right)}}} = ex/y\displaystyle {e}^{{{x}/{y}}} on the domain D={(x,y)0y2,0xy3}\displaystyle {D}={\left\lbrace{\left({x},{y}\right)}{\mid}{0}\le{y}\le{2},{0}\le{x}\le{y}^{{3}}\right\rbrace}.

D[Graphs generated by this script: initPicture(-1,9,-1,3);axes(1,1);stroke="red";path([[0,0],[0,2],[8,2]]);plot("x^(1/3)",0,8);text([1,1/2],"D");]

Then the double integral of f(x,y)\displaystyle {f{{\left({x},{y}\right)}}} over D\displaystyle {D} is

Df(x,y)dxdy=\displaystyle \int\int_{{D}}{f{{\left({x},{y}\right)}}}{d}{x}{\left.{d}{y}\right.}=   .