Evaluate CFdr\displaystyle \int_{{C}}\vec{{{F}}}\cdot{d}\vec{{{r}}} where F=3z,y,4x\displaystyle \vec{{{F}}}={\left\langle-{3}{z},-{y},{4}{x}\right\rangle}, and C\displaystyle {C} is given by r(t)=t,sin(t),cos(t), 0tπ\displaystyle \vec{{{r}}}{\left({t}\right)}={\left\langle{t},{\sin{{\left({t}\right)}}},{\cos{{\left({t}\right)}}}\right\rangle},\ {0}\le{t}\le\pi