Evaluate
∫
C
F
⃗
⋅
d
r
⃗
\displaystyle \int_{{C}}\vec{{{F}}}\cdot{d}\vec{{{r}}}
∫
C
F
⋅
d
r
where
F
⃗
=
⟨
−
3
z
,
−
y
,
4
x
⟩
\displaystyle \vec{{{F}}}={\left\langle-{3}{z},-{y},{4}{x}\right\rangle}
F
=
⟨
−
3
z
,
−
y
,
4
x
⟩
, and
C
\displaystyle {C}
C
is given by
r
⃗
(
t
)
=
⟨
t
,
sin
(
t
)
,
cos
(
t
)
⟩
,
0
≤
t
≤
π
\displaystyle \vec{{{r}}}{\left({t}\right)}={\left\langle{t},{\sin{{\left({t}\right)}}},{\cos{{\left({t}\right)}}}\right\rangle},\ {0}\le{t}\le\pi
r
(
t
)
=
⟨
t
,
sin
(
t
)
,
cos
(
t
)
⟩
,
0
≤
t
≤
π
Preview
Question 6
Question Help:
Video
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4)
Enter DNE for Does Not Exist, oo for Infinity