Evaluate S1+x2+y2dS\displaystyle \int\int_{{S}}\sqrt{{{1}+{x}^{{2}}+{y}^{{2}}}}{d}{S}, where S\displaystyle {S} is the helicoid with vector equation r(u,v)=<ucosv,usinv,v>0u1, 0vπ\displaystyle {r}{\left({u},{v}\right)}=<{u}{\cos{{v}}},{u}{\sin{{v}}},{v}>\quad{0}\le{u}\le{1},\ {0}\le{v}\le\pi