Let F=<x2eyz,xexz,z2exy>\displaystyle \overline{{{F}}}=<{x}^{{2}}{e}^{{{y}{z}}},{x}{e}^{{{x}{z}}},{z}^{{2}}{e}^{{{x}{y}}}>.

Use Stokes' Theorem to evaluate ScurlFdS\displaystyle \int\int_{{S}}{c}{u}{r}{l}\overline{{{F}}}\cdot{d}\overline{{{S}}}, where

S\displaystyle {S} is the hemisphere x2+y2+z2=4, z0\displaystyle {x}^{{2}}+{y}^{{2}}+{z}^{{2}}={4},\ {z}\ge{0}, oriented upwards