What word or phrase best completes the sentence below?
"If
lim
x
→
a
f
(
x
)
≠
L
\displaystyle \lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}\ne{L}
x
→
a
lim
f
(
x
)
=
L
, then we can find an
ϵ
>
0
\displaystyle \epsilon>{0}
ϵ
>
0
so that no matter how close
x
\displaystyle {x}
x
is to
a
\displaystyle {a}
a
:"
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
will be within
ϵ
\displaystyle \epsilon
ϵ
units of
L
\displaystyle {L}
L
.
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
will be at least
ϵ
\displaystyle \epsilon
ϵ
units away from
L
\displaystyle {L}
L
.
it is possible for
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
to be at least
ϵ
\displaystyle \epsilon
ϵ
units away from
L
\displaystyle {L}
L
.
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
will be getting farther from
L
\displaystyle {L}
L
.
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
will never equal
L
\displaystyle {L}
L
.
Submit
Try a similar question
License
[more..]