Solve:
y
(
4
)
+
8
y
′
′
+
16
y
=
0
\displaystyle {y}^{{{\left({4}\right)}}}+{8}{y}{''}+{16}{y}={0}
y
(
4
)
+
8
y
′′
+
16
y
=
0
y
(
0
)
=
−
2
,
y
′
(
0
)
=
2
,
y
′
′
(
0
)
=
−
8
,
y
′
′
′
(
0
)
=
24
\displaystyle {y}{\left({0}\right)}=-{2},\quad{y}'{\left({0}\right)}={2},\quad{y}{''}{\left({0}\right)}=-{8},\quad{y}{'''}{\left({0}\right)}={24}
y
(
0
)
=
−
2
,
y
′
(
0
)
=
2
,
y
′′
(
0
)
=
−
8
,
y
′′′
(
0
)
=
24
Preview
Question 6
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question