Solve
y
′
′
−
6
y
′
+
25
y
=
0
,
y
(
0
)
=
−
2
,
y
′
(
0
)
=
−
18
\displaystyle {y}{''}-{6}{y}'+{25}{y}={0},\quad{y}{\left({0}\right)}=-{2},\quad{y}'{\left({0}\right)}=-{18}
y
′′
−
6
y
′
+
25
y
=
0
,
y
(
0
)
=
−
2
,
y
′
(
0
)
=
−
18
y
(
t
)
\displaystyle {y}{\left({t}\right)}
y
(
t
)
=
Preview
Question 6 Part 1 of 2
The behavior of the solutions are:
Oscillating with increasing amplitude
Steady oscillation
Oscillating with decreasing amplitude
Question Help:
Video
Video
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question