Solve
y
′
′
+
8
y
′
+
16
y
=
0
,
y
(
0
)
=
−
1
,
y
′
(
0
)
=
9
\displaystyle {y}{''}+{8}{y}'+{16}{y}={0},\quad{y}{\left({0}\right)}=-{1},\quad{y}'{\left({0}\right)}={9}
y
′′
+
8
y
′
+
16
y
=
0
,
y
(
0
)
=
−
1
,
y
′
(
0
)
=
9
At what time does the function
y
(
t
)
\displaystyle {y}{\left({t}\right)}
y
(
t
)
reach a maximum?
t
\displaystyle {t}
t
=
Preview
Question 6
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4)
Enter DNE for Does Not Exist, oo for Infinity