Consider the linear system :
dxdt=2x2y\displaystyle \frac{{{\left.{d}{x}\right.}}}{{\left.{d}{t}\right.}}=-{2}{x}-{2}{y}

dydt=2x+y\displaystyle \frac{{{\left.{d}{y}\right.}}}{{\left.{d}{t}\right.}}=-{2}{x}+{y}
with initial conditions x(0)=0andy(0)=1\displaystyle {x}{\left({0}\right)}={0}{\quad\text{and}\quad}{y}{\left({0}\right)}={1}. Solve this IVP and enter the formulas for the component functions below.

x(t)=\displaystyle {x}{\left({t}\right)}=  

y(t)=\displaystyle {y}{\left({t}\right)}=