Find the solution of the system of differential equations:
[x1(t)x2(t)]=[2+22+222].[x1(t)x2(t)]\displaystyle {\left[\begin{array}{c} {x}_{{1}}'{\left({t}\right)}\\{x}_{{2}}'{\left({t}\right)}\end{array}\right]}={\left[\begin{array}{cc} -{2}&+\frac{{2}}{{2}}\\+\frac{{2}}{{2}}&-{2}\end{array}\right]}.{\left[\begin{array}{c} {x}_{{1}}{\left({t}\right)}\\{x}_{{2}}{\left({t}\right)}\end{array}\right]}
with initial condition: [x1(0)x2(0)]=[34]\displaystyle {\left[\begin{array}{c} {x}_{{1}}{\left({0}\right)}\\{x}_{{2}}{\left({0}\right)}\end{array}\right]}={\left[\begin{array}{c} {3}\\{4}\end{array}\right]}





x1(t)=\displaystyle {x}_{{1}}{\left({t}\right)}=  
x2(t)=\displaystyle {x}_{{2}}{\left({t}\right)}=